LAPORAN RESMI PRAKTIKUM FARMAKOLOGI EKSPRIMENTAL II


1 LAPORAN RESMI PRAKTIKUM FARMAKOLOGI EKSPRIMENTAL II PERCOBAAN V UJI PENETAPAN WAKTU PENGAMBILAN CUPLIKAN DAN ASUMSI MODEL KOMPARTEMEN SERTA PEMILIHA...
Author:  Benny Lesmana

1 downloads 74 Views 463KB Size

Recommend Documents


LAPORAN RESMI PRAKTIKUM FARMAKOLOGI EKSPERIMENTAL II PERCOBAAN II
1 LAPORAN RESMI PRAKTIKUM FARMAKOLOGI EKSPERIMENTAL II PERCOBAAN II UJI PENETAPAN PARAMETER FARMAKOKINETIKA SUATU OBAT SETELAH PEMBERIAN DOSIS TUNGGAL...

LAPORAN RESMI PRAKTIKUM MIKROTEKNIK
1 LAPORAN RESMI PRAKTIKUM MIKROTEKNIK Metode Squash Disusun Untuk Memenuhi Ujian Kompetensi Mata Kuliah Mikroteknik Semester V Disusun Oleh : Wike Tra...

Laporan Resmi Praktikum Snort
1 Laporan Resmi Praktikum Snort Definisi Snort Snort merupakan sebuah aplikasi ataupun software yang bersifat opensource GNU General Public License [G...

LAPORAN PRAKTIKUM FARMAKOLOGI OBAT ANTIINFLAMASI
1 LAPORAN PRAKTIKUM FARMAKOLOGI OBAT ANTIINFLAMASI Disusun oleh : Desti Rizkia Nur Annisa - NIM : Andini Gianisa Utami - NIM : Annisa Siti Nurfalah - ...

LAPORAN RESMI PRAKTIKUM FARMAKOLOGI EKSPERIMENTAL II RESEPTOR SEBAGAI TARGET AKSI OBAT (RESEPTOR HISTAMIN)
1 LAPORAN RESI PRAKTIKU FARAKOLOGI EKSPERIENTAL II RESEPTOR SEBAGAI TARGET AKSI OBAT (RESEPTOR HISTAIN) Disusun oleh: Kelas : A 2014 Golongan / Kelomp...

LAPORAN RESMI PRAKTIKUM BAHASA PEMROGRAMAN
1 LAPORAN RESMI PRAKTIKUM BAHASA PEMROGRAMAN BAB 6 ABSTRACTION Disusun Oleh : NAMA : FARIDATUS SHOFIYAH NRP : KELOMPOK : C1 DOSEN PENGAMPU : MEDIKA RI...

LAPORAN RESMI PRAKTIKUM ANALISIS BATUBARA
1 LAPORAN RESMI PRAKTIKUM ANALISIS BATUBARA FONT 14 SPASI 1,5 FONT 12 SPASI 1,5 NAMA NPM Disusun oleh : NAMA PRAKTIKAN : XXX 4 cm 4 cm FONT 14 SPASI 1...

LAPORAN RESMI PRAKTIKUM MIKROBIOLOGI INDUSTRI
1 LAPORAN RESMI PRAKTIKUM MIKROBIOLOGI INDUSTRI PRAKTIKUM ISOLASI MIKROORGANISME DAN PENGGUNAAN MIKROSKOP Dibuat oleh: Yesaya Reuben Natanael ( ) LABO...

LAPORAN RESMI PRAKTIKUM BAHASA PEMROGRAMAN
1 LAPORAN RESMI PRAKTIKUM BAHASA PEMROGRAMAN MODUL 9 KONEKSI MYSQL Disusun Oleh : NAMA : FARIDATUS SHOFIYAH NRP : KELOMPOK : C1 DOSEN PENGAMPU : MEDIK...

LAPORAN RESMI PRAKTIKUM MIKROBIOLOGI VIROLOGI
1 LAPORAN RESMI PRAKTIKUM MIKROBIOLOGI VIROLOGI Perhitungan Jumlah Bakteri Dengan Metode Most Probable Number (MPN) atau Angka Paling Mungkin (APM) Ol...



LAPORAN RESMI PRAKTIKUM FARMAKOLOGI EKSPRIMENTAL II PERCOBAAN V UJI PENETAPAN WAKTU PENGAMBILAN CUPLIKAN DAN ASUMSI MODEL KOMPARTEMEN SERTA PEMILIHAN DOSIS DALAM FARMAKOKINETIKA

Nama 1. 2. 3. 4. Nur Ainin Sofia Mohd Zailani

Hari/Tanggal Praktikum Dosen Jaga Asisten Jaga Asisten Koreksi

Disusun oleh : Kelas : C Golongan/Kelompok : IV / 3 NIM

Tanda Tangan

FA/09761

: Senin, 10 November 2014 : : :

LABORATORIUM FARMAKOLOGI DAN TOKSIKOLOGI BAGIAN FARMAKOLOGI DAN FARMASI KLINIK FAKULTAS FARMASI UNIVERSITAS GADJAH MADA YOGYAKARTA 2014

PERCOBAAN V PENETAPAN WAKTU PENGAMBILAN CUPLIKAN DAN ASUMSI MODEL KOMPARTMEN SERTA PEMILIHAN DOSIS DALAM FARMAKOKINETIKA

I.

TUJUAN 

Agar mahasiswa mampu menetapkan jadwal dan jumlah pencuplikan untuk pengukuran parameter farmakokinetik berdasarkan model kompartmen suatu obat.



Agar mahasiswa mampu menggunakan dosis yang tepat untuk subyek uji.



Agar mahasiswa mampu memperkirakan model kompartmen berdasarkan kurva semilogaritmatik kadar obat dalam plasma/darah lawan waktu.

II.

DASAR TEORI Farmakokinetika adalah ilmu yang mempelajari penyerapan, penyaluran dan

pengurangan obat. Deskripsi tentang penyaluran dan pengurangan obat sangat penting untuk merubah permintaan dosis pada individu dan kelompok pasien. Pada fase farmakokinetika, obat mengalami proses ADME yaitu absorpsi, distribusi, biotransformasi (metabolisme) dan ekskresi yang berjalan secara stimulant langsung atau tak langsung meliputi perjalanan suatu obat melintasi sel membrane (Shargel & Yu, 1988). Pengetahuan farmakokinetika berguna dalam berbagai bidang farmasi dan kedokteran,

seperti

untuk

bidang

farmakologi.

Pertama

kali,

dengan

penelitian

farmakokinetika dapat dibantu diterangkan mekanisme kerja suatu obat dalam tubuh, khususnya untuk mengetahui senyawa yang mana yang sebenarnya bekerja dalam tubuh; apakah senyawa asalnya, metabolitnya atau kedua-duanya. Jika efek obat dapat dinilai secara kuantitatif, data kinetika obat dalam tubuh sangat penting artinya untuk menentukan hubungan antara kadar/jumlah obat dalam tubuh dengan intensitas efek yang ditimbulkannya. Dengan demikian daerah kerja efektif obat (therapeutic window) dapat ditentukan farmasetika, farmasi klinik, toksikologi dan kimia medisinal. Obat berada dalam suatu keadaan dinamik dalam tubuh. Dalam suatu sistem biologik peristiwa-peristiwa yang dialami obat sering terjadi secara serentak. Dalam menggambarkan sistem biologik yang kompleks tersebut, dibuat penyederhanaan anggapan mengenai pergerakan obat itu (Sriwidodo, 1985). Model farmakokinetik berguna untuk (Shargel & Yu, 1988): a) Memperkirakan kadar obat dalam plasma, jaringan dan urine pada berbagai pengaturan dosis b) Menghitung pengaturan dosis optimum untuk tiap penderita secara individual

c) Memperkirakan kemungkinan akumulasi obat dngan aktivitas farmakologi atau metabolit – metabolit d) Menghibungakan kemungkinan konsentrasi obat dengan aktivitas farmakologik atau toksikologik e) Menilai perubahan laju atau tingkat availabilitas antar formulasi f) Menggambarkan perubahan faal atau penyakit yang mempengaruhi absorbsi, distribusi dan eliminasi g) Menjelaskan interaksi obat Pada model dua kompartemen, tubuh dianggap terdiri atas dua kompartemen yaitu kompartemen sentral dan kompartemen perifer. Kompartemen sentral meliputi darah dan berbagai jaringan yang banyak dialiri darah seperti jantung, paru, hati, ginjal dan kelenjarkelenjar endokrin. Obat tersebar dan mencapai kesetimbangan dengan cepat dalam kompartemen ini. Kompartemen perifer adalah berbagai jaringan yang kurang dialiri darah misalnya otot, kulit, dan jaringan lemak sehingga obat lambat masuk kedalamnya. Model dua kompartemen ini pada prinsipnya sama dengan model satu kompartemen, bedanya terdapat dalam proses distribusi karena adanya kompartemen perifer; eliminasi tetap dari kompartemen sentral (Oktavia, 2009). Model Farmakokinetik merupakan suatu hubungan matematik yang menggambarkan perubahan konsentrasi terhadap waktu dalam sistem yang diperiksa .Metode analisis kompartemental digunakan untuk memperkirakan dan menentukan secara kuantitatif apa yang terjadi terhadap obat sebagai fungsi waktu dari saat diberikan sampai waktu dimana obat tersebut sudah tidak ada lagi di dalam tubuh. Variabel dalam farmakokinetik terdapat dua macam, yaitu variabel tergantung dan variabel bebas. Dalam praktek parameter farmakokinetik tidak ditentukan secara langsung, tetapi ditentukan melalui percobaan dari sejumlah variabel tergantung dan bebas, yang secara bersama dikenal sebagai data. Melalui data dapat diperkirakan model farmakokinetik yang kemudian diuji kebenarannya dan selanjutnya diperoleh parameter-parameter farmakokinetiknya. Variabel bebas meliputi variabel interval dan variabel eksternal. Kedua variabel ini secara langsung mempengaruhi parameter primer, yang terdiri dari Ka (kecepatan absorpsi), Vd (volume distribusi) dan Cl (clearance). Parameter primer mempengaruhi parameter sekunder dan parameter turunan. Parameter sekunder terdiri dari T1/2 (waktu paruh eliminasi) dan F eliminasi. Parameter turunan terdiri dari AUC (Area Under Curve), F oral dan Css (kadar obat dalam darah). Sehingga parameter primer, parameter sekunder dan parameter turunan merupakan variabel tergantung.

Parameter primer meliputi : 1. Ka (kecepatan absorpsi) Merupakan tetapan kecepatan absorpsi yang ditentukan oleh : a. Variabel internal Meliputi surface area (luas permukaan absorpsi), perfusi darah, kecepatan peristaltik usus dan kecepatan pengososngan lambung. b. Variable eksternal Meliputi sifat obat itu sendiri (lipofilik atau hidrofilik) dan makanan/minuman. 2. Vd (volume distribusi) Merupakan parameter yang menerangkan seberapa luas suatu obat terdistribusi dalam tubuh. Volume ini tidak bermakna faal atau tidak ada kaitannya dengan faal. Volume distribusi dipengaruhi oleh : a. Perfusi darah Yaitu seberapa cepat dan banyak obat masuk dalam darah. b. Lipofilitas obat c. Seberapa kuat obat terikat oleh protein plasma, protein darah maupun protein jaringan. 3. Cl (clearance/klirens) Merupakan parameter yang menerangkan pembersihan kandungan obat dalam suatu volume distribusi dalam satuan volume atau waktu (ml/menit, ml/jam, liter/jam). Parameter ini menunjukkan kemampuan tubuh untuk mengeliminasi obat. Cl = Cl hepar + Cl renal + Cl lain-lain Cl dapat berubah yang dapat disebabkan oleh : a. Kegagalan ginjal, b. Perubahan enzim, c. Aliran darah yang masuk organ eliminasi, d. Kekuatan organ/kapasitas organ eliminasi. Parameter sekunder meliputi : 1. T1/2 eliminasi (waktu paruh eliminasi) Adalah waktu yang diperlukan untuk mengubah jumlah obat dalam tubuh menjadi separuhnya selama eliminasi dan merupakan parameter kedua setelah klirens.

2. F el (fraksi eliminasi) Merupakan fraksi dari dosis obat yang mencapai peredaran darah dalam bentuk aktif setelah eliminasi (bioavailibilitas). Jumlah parameter yang diperlukan untuk menggambarkan model bergantung pada kerumitan proses dan rute pemberian obat. Dalam praktek, terdapat suatu batasan pada jumlah data yang mungkin diperoleh. Bila jumlah parameter yang dinilai bertambah maka ketelitian penghitungan parameter ini menjadi lebih sulit. Agar parameter-parameter menjadi sahih, jumlah titik-titik data seharusnya selalu melebihi jumlah parameter dalam model . (Shargel & Yu, 1988). Macam-macam model kompartemen : a. Model Mammillary Model Mammillary merupakan model kompartemen yang paling umum digunakan dalam farmakokinetika. Model terdiri atas satu atau lebih kompartemen perifer yang dihubungkan ke suatu kompartemen sentral. Kompartemen sentral mewakili plasma dan jaringan-jaringan yang perfusinya tinggi dan secara cepat berkesetimbangan dengan obat. Model Mammillary dapat dianggap sebagai suatu sistem yang berhubungan secara erat, karena jumlah obat dalam setiap kompartemen dalam sistem tersebut dapat diperkirakan setelah obat dimasukkan ke dalam suatu kompartemen tertentu. Bila suatu obat diberikan secara IV, obat secara langsung masuk ke dalam kompartemen sentral. Eliminasi obat dari kompartemen sentral terjadi oleh karena organ-organ yang terlibat dalam eliminasi obat terutama ginjal dan hati, merupakan jaringan yang diperfusi secara baik. Tetapan laju dari farmakokinetika dinyatakan dengan huruf K. Kompartemen satu mewakili plasma atau kompartemen sentral, sedamgkan kompartemen dua mewakili kompartemen jaringan. Penggambaran model ini mempunyai tiga kegunaan, yaitu : o memungkinkan ahli farmakokinetika merumuskan persaman diferensial untuk menggambarkan perubahan konsentrasi obat dalam masing-masing kompartemen, o memberikan suatu gambaran nyata dari laju proses, dan o menunjukkan berapa banyak tetapan farmakokinetik yang diperlukan untuk menggambarkan proses secara memadai.

1

k

Model 1. Model kompartemen satu terbuka, injeksi IV

Ka

K

1

Model 2. Model kompartemen satu terbuka denagn absorpsi order kesatu K12

2

1 K21

K

Model 3. Model kompartemen dua terbuka, injeksi IV K12

Ka

1

2 K21

K

Model 4. Model kompartemen dua terbuka dengan absorpsi order kesatu

B. Model Catenary Dalam farmakokinetika model mammillary harus dibedakan dengan macam model kompartemen yang lain yang disebut model catenary. Model Catenary terdiri atas kompartemen-kompartemen yang bergabung satu dengan yang lain menjadi satu deretan kompartemen. Sebaliknya, model mammillary terdiri atas satu atau lebih kompartemen yang mengelilingi suatu kompartemen sentral seperti satelit. Oleh karena itu model catenary tidak dapat dipakai pada sebagia besar organ yang fungsional dalam tubuh yang secara langsung berhubungan dengan plasma, model ini digunakan tidak sesering model mammillary.

Ka

K21 K12 1

K23 3

2

K32

C. Model Fisiologi Model fisiologi juga dikenal sebagai model aliran darah atau model perfusi, merupakan model farmakokinetik yang didasarkan atas data anatomik dan fisiologik yang diketahui. Perbedaan utama antara model perfusi dan model kompartemen yang lazim adalah sebagai berikut. - Ia tidak dibutuhkan data yang tepat dalam model perfusi. Konsentrasi obat dalam berbagai jaringan diperkirakan melalui ukuran jaringan organ, aliran darah, dan melalui percobaan ditentukan perbandingan obat dalam jaringan darah (yakni partisi obat antara jaringan dan darah). - Aliran darah, ukuran jaringan dan perbandingan obat dalam jaringan darah dapat berbeda sehubungan dengan kondisi patofisiologik tertentu. Oleh karena itu, dalam model fisiologik

pengaruh

perubahan-perubahan

ini

terhadap

distribusi

obat

harus

diperhitungkan. - Model farmakokinetik dengan dasar fisiologik dapat diterapkan pada beberapa spesies, dan dengan beberapa data obat pada manusia dapat diekstrapolasikan. Jumlah kompartemen jaringan dalam suatu model perfusi berbeda-beda bergantung obatnya. Sebagai ciri khas, jaringan atau organ yang tidak ditembus obat dikeluarkan dari model ini. Dengan demikian organ-organ seperti otak, tulang-tulang, dan bagian-bagian lain sistem saraf pusat sering tidak dimasukkan dalam model karena hampir semua obat mempunyai daya tembus yang kecil ke dalam organ-organ tersebut.

Makna yang nyata

dari model fisiologik adalah dapat digunakannya model ini dalam memprakirakan farmakokinetik pada manusia dari data hewan. Besarnya berbagai organ tubuh atau jaringan, tingkat ikatan protein, kapasitas metaboisme obat, dan aliran darah pada manusia dan spesies lain seringkali telah diketahui atau dapat ditentukan. Jadi, parameterparameter, fisiologik dan anatomik dapat digunakan untuk memprakirakan efek obat pada manusia berdasar efek obat pada hewan. Waktu pengambilan obat dalam media cairan hayati (waktu sampling) dan perkiraan model kompartemen memiliki hubungan keterkaitan. Keterkaitan kedua faktor ini sedemikian rupa sehingga apabila terjadi kesalahan waktu pengambilan cuplikan, maka dapat menyebabkan kesalahan pula pada penentuan model kompartemen. Untuk menghindari kesalahan dalam penetapan model farmakokinetik, terutama untuk obat yang diberikan secara intravena, waktu sampling hendaknya dilakukan sedini mungkin sesudah pemberian obat. Untuk percobaan pendahuluan lama pengambilan cuplikan perlu diperhatikan. Jika sebagai cuplikan digunakan darah, pencuplikan dilakukan 3-5 kali T1/2 eliminasi obat karena diasumsikan kadar obat yang dapat dianalisis pada waktu tersebut mencapai 90-95% kadar obat total. Jika digunakan urin, pencuplikan dilakukan 7-10 kali

T1/2 eliminasi obat berdasarkan asumsi bahwa pada waktu tersebut kadar obat yang diekskresikan sudah mencapai 99% kadar obat total. Sedangkan pada percobaan pendahuluan sebaiknya waktu sampling dicari setelah pemberian intravena. Dalam waktu sampling perlu ditetapkan interval pengambilan dan lamanya waktu pengambilan sampling. Untuk hasil terbaik pada ektravaskuler, perlu diambil pada dua belas titik, yaitu tiga titik pada tiap tahap absorpsi, sekitar puncak, distribusi dan eliminasi, untuk model dua kompartemen. Sedangkan untuk model satu kompartemen, diambil pada sembilan titik yaitu tiga titik pada tiap tahap absorpsi, sekitar puncak dan eliminasi. Data yang diperoleh dari hasil percobaan pendahuluan tersebut selanjutnya digunakan untuk memperkirakan model kompartemen suatu obat dalam farmakokinetiknya, yaitu dengan memplotkan kadar obat dalam darah vs waktu pada kertas semilogaritma atau plot log kecepatan ekskresi (dDE/dt) vs waktu pada kertas grafik normal jika digunakan data urin.

Satu kompartemen

INTRA VASKULER

EKSTRA VASKULER

Dua kompartemen

1.Model 1 kompartemen Tubuh dianggap sebagai 1 kompartemen tempat obat menyebar dengan seketika dan merata ke seluruh cairan dan jaringan tubuh. Model ini terlalu disederhanakan sehingga untuk kebanyakan obat kurang tepat. 2. Model 2 kompartemen Tubuh dianggap terdiri atas kompartemen sentral dan perifer. Kompartemen sentral terdiri dari darah dan berbagai jaringan yang banyak dialiri darah seperti jantung, hati ginjal dan kelenjar-kelenjar endokrin. Obat tersebar dan mencapai kesetimbangan dengan cepat. Komponen perifer adalah berbagai jaringan yang kurang dialiri darah misalnya otot, kulit, dan jaringan lemak, sehingga obat lambat masuk ke dalamnya. Model ini prinsipnya sama dengan model 1 kompartemen, bedanya hanya dalam proses distribusi karena adanya kompartemen perifer; eliminasi tetap dari kompartemen sentral. Model ini cocok untuk banyak obat. 3. Model 3 kompartemen Kompartemen perifer dibagi atas kompartemen perifer yang dangkal (kompartemen 2) dan kompartemen perifer yang dalam (kompartemen 3). Untuk perhitungan regimen dosis klinik, biasanya digunakan model 1 kompartemen untuk pemberian peroral dan kompartemen 2 untuk pemberian intravena. Pada pemberian bolus intravena, biasanya fase distribusi terlihat jelas (menandakan 2 kompartemen), sedangkan pada pemberian oral, fase distribusinya sering tertutup oleh fase absorpsi. Dalam model kompartemen terbuka, tubuh diasumsikan sebagai kompartemen terbuka, seluruh kompartemen badan dianggap sebagai kompartemen sentral. Dalam hal ini kompartemen sentral didefinisikan sebagai jumlah seluruh bagian tubuh (organ dan jaringan atau bagian lainnya) dimana kadar obat segera berada dalam kesetimbangan dengan yang ada dalam plasma/darah. Model dua kompartemen terbuka berarti badan diasumsikan terbagi menjadi dua bagian kompartemen yaitu kompartemen sentral dan kompartemen perifer. Kompartemen perifer merupakan jumlah seluruh bagian tubuh (organ dan jaringan atau bagian lainnya) kemana obat akhirnya akan menyebar tetapi tidak segera dalam kesetimbangan. Pemberian dosis harus diperhatikan karena berkaitan dengan salah satu syarat metode yaitu sensitifitas metode. Hal ini disebabkan karena besarnya dosis yang digunakan harus memungkinkan obat dapat terdeteksi. Di samping itu ada juga beberapa obat yang kinetikanya tergantung dari dosis sehingga harus ditetapkan jumlah dosis yang akan diberikan agar memperoleh efek terapeutik.

Pemilihan dosis dapat mengacu pada LD50 obat yang akan diuji. Perbandingan harga LD50 oral lawan intravena dapat digunakan untuk memperoleh gambaran tentang absorbabilitas obat sebagai fungsi dari pemberian peroral. Jika informasi ini tidak tersedia dapat digunakan dosis awal 5-10 % dari LD50 intravena .Hal yang perlu diperhatikan adalah apakah metode analisis mendukung besaran dosis tersebut sehingga fase eliminasi kadar obat masih dapat dimonitor. Dosis awal ini kemudian dinaikkan menurut besaran tertentu untuk mendeteksi timbulnya kinetika tergantung dosis (dose dependent farmacocinetic). Untuk obat-obat yang mudah mengalami saturasi dalam sistem transportasi dan eliminasinya (misalnya fenitoin, warfarin, dan seftriakson), kenaikan nilai-nilai parameter kinetiknya (misalnya AUC, T1/2) tidak sebanding dengan kenaikan dosis. Pemilihan dosis juga harus memperhatikan adanya fenomena kinetika yang tergantung dosis, yaitu fenomena yang menunjukkan adanya perubahan parameter farmakokinetika obat bila dosisnya berubah. Keadaan ini berkaitan dengan asumsi orde kinetika obat tersebut. Kinetika diasumsikan mengikuti orde nol bila menunjukkan fenomena tergantung dosis (dependent dose). Tapi bila parameter farmakokinetik obat tidak dipengaruhi oleh perubahan dosis (independent dose), maka dianggap mengikuti orde pertama. Hal ini dapat diketahui dengan membandingkan harga waktu paruh eliminasi (T1/2) obat setelah pemberian beberapa dosis yang berbeda. Jika harga T1/2 yang diperoleh berbeda akibat perbedaan dosis yang diberikan, maka kinetik obat tersebut menunjukkan fenomena tergantung dosis (dependent dose).

III.

ALAT DAN BAHAN Alat              

Tabung reaksi/flakon Labu takar 5 ml Pipet volume 0,1; 0,2; 1; 2ml Mikropipet Pipet Tetes Spektrofotometer dan kuvet Skalpel/silet Sarung Tangan Tabung eppendorf Sentrifuge Stopwatch Vortex Alat Timbang Alat Injeksi

Bahan         

Asan Trikloroasetat (TCA) Sulfametoksazol Akuades Heparin Darah tikus Darah kelinci Natrium Nitrit 0,1% Amonium Sulfamat 0,5% N(1-naftil)etilendiamin 0,1%

IV.CARA KERJA 1. Pembuatan kurva baku darah Dibuat seri kadar baku SMZ yaitu : 5,10,25,50,100 dan 200 g/ml dengan mengencerkan larutan SMZ 1,0 mg/ml menggunakan aquadest Diambillah masing-masing kadar SMZ diatas sebanyak 0,25 ml kemudian masukkan dalam tabung reaksi. Ditambah aquadest dan Tambahkan TCA 10% 0,2 ml lalu vortex dan disentifugasi 10 menit 2500rpm Ditambahkan nano2 0,1% 0,1 ml dan diamkan selama 3 menit Ditambahkan ammonium sulfamat 0,5% 0,2 ml dan diamkan selama 2 menit Ditambahkan NED 0,1% 0,2 ml dan diamkan selama 5 menit Dibaca absorbansinya pada  545 nm pada spektrofotometer Dibuat persamaan kurva baku : absorbansi terkoreksi vs kadar Y=Bx + A

2. Penentuan Model Kompartemen Sulfametoksazol (SMZ) Kelinci ditimbang Dibersihkan bulu disekitar ekor Diambil 0,2 ml darah dari vena pada telinga kelinci untuk blangko Disuntuikkan SMZ secara peroral dengan dosis 75 mg/kg BB dan 150 mg/kgBB Diambil cuplikan (0,2 ml darah) 2 jam setelah penyuntikkan, yaitu : 5’, 10’,15’, 30’. 45’, 60’, 75’, 90’, 120’ Kadar SMZ diukur (metode Bratton-Marshall) yaitu: sampel + TCA 10% 0,2 ml, lalu divortex 30 detik kemudian sentrifuge 2500 rpm selama 10 menit Beningan diambil 0,2 ml, dimasukkan ke flakon bersih Ditambah NaNO2 0,1% 0,5 ml lalu diamkan selama 3 menit Ditambah Ammonium sulfamat 0,5 % 0,5 ml lalu diamkan selama 2 menit Ditambah NED 0,1 % sebanyak 2 ml lalu diamkan selama 5 menit Dibaca absorbansi pada  545 nm dengan spektrofotometer Dibuat kurva waktu vs kadar ( dari persamaan kurva baku) dan dihitung parameter-parameter farmakokinetiknya Tentukan model kompartemen dan jadwal pencuplikan yang tepat

3. Analisa Data Dihitung kadar sulfametoksazol dalam tiap menit cuplikan menggunakan persamaan kurva baku Dibuat regresi linier ln Cp vs t fase eliminasi dan fase absorbsi Ditentukan model kompartemen menggunakan persamaan notary Dihitung parameter-parameter farmakokinetik = tmax, t1/2, Cp max, Keliminasi, K absorbsi, Vd, Cl, AUC0-∞

Oktavia, RW., 2009, “Pengaruh Seduhan Teh Hijau (Camellia sinensis) Terhadap Farmakokinetika Parasetamol Yang Diberikan Bersama Secara Oral Pada Kelinci Jantan”, Skripsi, Fakultas Farmasi Universitas Muhammadiyah: Surakarta.

Shargel, L., dan Yu, AB., 1988, Biofarmasetika Dan Farmakokinetika Terapan, Airlangga University Press: Surabaya.

Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2019 TIXPDF.COM - All rights reserved.