Projek. Contoh Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri. Perhatikan barisan bilangan 2, 4, 8, 16,


1 Projek Himpulah miimal tiga masalah peerapa barisa da deret aritmatika dalam bidag fisika, tekologi iformasi, da masalah yata di sekitarmu. Ujilah b...
Author:  Herman Budiman

0 downloads 83 Views 569KB Size

Recommend Documents


No documents


Projek Himpunlah minimal tiga masalah penerapan barisan dan deret aritmatika dalam bidang fisika, teknologi informasi, dan masalah nyata di sekitarmu. Ujilah berbagai konsep dan aturan barisan dan deret aritmatika di dalam pemecahan masalah tersebut. Buatlah laporan hasil kerjamu dan sajikan di depan kelas! 3. Menemukan Konsep Barisan dan Deret Geometri a. Barisan Geometri

Contoh 6.9 Perhatikan barisan bilangan 2, 4, 8, 16, … 2

4

×2

Nilai perbandingan

8

×2

16

...

×2

4 8 16 u u2 u3 =2 = = ... = n = 2 = = 2 4 8 u1 u2 un −1

Jika nilai perbandingan dua suku berurutan dimisalkan r dan nilai suku pertama adalah a, maka susunan bilangan tersebut dapat dinyatakan dengan 2, 2 × 2, … Perhatikan gambar berikut ini. ...

...

2×2×2 2×2×2×2

...

...

a×r

a×r×r

a×r×r×r

...

...

ar1–1

ar2–1

ar3–1

ar4–1

...

arn–1

u1 = a

u2 = ar

u3 = ar2

u4 = ar3

...

un = arn–1

2

4

2

2×2

a

8

16

Dari pola di atas dapat disimpulkan bahwa un = arn – 1 210

Kelas X SMA/MA/SMK/MAK Edisi Revisi

Contoh 6.10 Perhatikan susunan bilangan 1, 1 , 1 , 1 , ... 2 4 8 1 1 11 1 11 1 1 , , , ,... , , ,... , , ... 2 4 82 4 82 4 8

1

×

1 16

1 1 1 1 1 1 1 1 1 1 1 1 , , , ...× , , , ...× , , , ...× , , , ... 2 4 8 2 4 8 2 4 8 2 4 8

u u2 u3 1 = = ... = n = . Jika nilai perbandingan dua suku beru1 u2 un −1 2 urutan dimisalkan r dan nilai suku pertama adalah a, maka susunan bilangan tersebut  1  1 1  1 1  1 1  dapat dinyatakan dengan 1,1,1  ,   ,   ,   , …  2 2 2 4 2 8 2 Perhatikan gambar berikut! Nilai perbandingan

×r

×r

×r

×r

a

ar

ar2

...

arn–1

u1

u2

u3

...

un

Sehingga: • u1 = a = 1  1  11 1  1 11 1  1 11 1  1  1  • 1,1u2 = 1u,11. = ,1. ,    ,  ,    , , ⇔  ,u2 = u1.r = a.r  2  22 2  2 42 2  4 82 2  8  2  2 3  1  1111 1 11111 1 1111111 111  2 • 1,1u3 = 1u,121.,1= ,1.,, . = ,1. ⇔ , , , , ,        ,u3,= u2.r = a.r.r = a.r  2  2222  2 42222  4 28422282 822  2

23

3

 1  1  1 111 111111  11 1  1  1  2 3 • 1,1u4 = u,3. =1,11., , . =, 1. , , ⇔  , u4 = u,3.r = a.r .r = a.r  2  2  2 224 222228  24 2  8  2  2 3 2 3  1  11 1 111 111 1 1  11 1  1  1  • 1,1u5 =u . = 1 1 1. . = 1. , , , , , , , u5 = ,u4.r = a.r3.r = a.r4  4           , ⇔  2  22 2 224 222 28  24 2  8  2  Dari pola di atas, tentunya dengan mudah kamu pahami bahwa, un = un–1.r = a.rn–2 r = a.rn–1

Matematika

211

Contoh 6.11 Seorang anak memiliki selembar kertas. Berikut ini disajikan satu bagian kertas.



Gambar 6.12 Selembar Kertas

Ia melipat kertas tersebut menjadi dua bagian yang sama besar. Kertas terbagi menjadi 2 bagian yang sama besar.

Gambar 6.13 Selembar Kertas pada Lipatan Pertama

Kertas yang sedang terlipat ini, kemudian dilipat dua kembali olehnya. Kertas terbagi menjadi 4 bagian yang sama besar.

Gambar 6.14 Selembar Kertas pada Lipatan Kedua

Ia terus melipat dua kertas yang sedang terlipat sebelumnya. Setelah melipat, ia membuka hasil lipatan dan ditemukan kertas tersebut terbagi menjadi 2 bagian. Perhatikan bagian kertas tersebut membentuk sebuah barisan bilangan yang disajikan sebagai berikut. 1

2

4

...

u1

u2

u3

u...

Setiap dua suku berurutan dari barisan bilangan tersebut memiliki perbandingan yang u u u sama, yaitu 2 = 3 = ... = n = 2. Barisan bilangan ini disebut barisan geometri. u1 u2 un −1

212

Kelas X SMA/MA/SMK/MAK Edisi Revisi

Definisi 6.3 Barisan geometri adalah barisan bilangan yang nilai pembanding (rasio) antara dua suku yang berurutan selalu tetap. Rasio, dinotasikan r merupakan nilai perbandingan dua suku berurutan. Nilai r dinyatakan: r =

u u2 u3 u4 = = = ... n . u1 u2 u3 un −1

Sifat-6.3 Jika u1, u2 , u3, …, un merupakan susunan suku-suku barisan geometri, dengan u1 = a dan r adalah rasio, maka suku ke-n dinyatakan un = arn–1, n adalah bilangan asli. b. Deret Geometri Analog dengan konsep deret aritmetika, deret geometri juga merupakan barisan suku pertama barisan geometri. Cermati masalah di bawah ini!

Masalah-6.8 Sebuah bola jatuh dari gedung setinggi 3 meter ke lantai dan memantul kembali 4 setinggi kali dari tinggi sebelumnya 5 Tentukanlah panjang lintasan bola tersebut sampai pada pantulan ke-10!

Gambar 6.15 Pantulan Bola

Alternatif Penyelesaian Pandang dan amatilah kembali gambar di atas! Tampak pada Gambar 6.15 bahwa terdapat 2 kali lintasan bola yang sama tingginya setelah pantulan pertama. Misalkan Tabel 6.6 Tinggi Pantulan Bola Pantulan ke ...

0

1

2

3

...

Tinggi pantulan (m)

3

12 5

48 25

192 125

...

Suku ke ...

u1

u2

u3

u4

...

Matematika

213

a ketinggian awal bola dan misalkan t tinggi pantulan maka tinggi pantulan bola dapat diberikan pada tabel berikut. • •

Coba kamu teruskan mengisi tabel pada pantulan berikutnya. Apakah mungkin terjadi ketinggian pantulan bola sama dengan nol?

Misalkan panjang lintasan bola sampai pantulan ke-10 adalah S. S = u1 + 2 (u2 + u3 + u4 + ... + u10) ⇔ S = 2 (u1 + u2 + u3 + u4 + ... + u10) – u1 ⇔ S = 2s10 – u1 dimana Tabel 6.7 Deret Pantulan Bola

Deret

Jumlah suku-suku

Nilai

s1 s2

u1 u1 + u2

3

s3

u1 + u2 + u3

s4

u1 + u2 + u3 + u4

... sn

... u1 + u2 + u3 + u4 ... + un

3+ 3+ 3+

12 9 25 − 16 = 3( ) = 3( ) 5 5 5

12 48 61 125 − 64 + = 3( ) = 3( ) 5 25 25 25

12 48 192 369 625 − 256 + + = 3( ) = 3( ) 5 25 125 125 125 ... ssn n = 3(

5n − 4n ) 5n −1

Berdasarkan Tabel 6.7 deret bilangan tersebut adalah sebuah barisan jumlah, 51 − 41 52 − 4 2 53 − 43 5n − 4 n . s1 , s2 , s3 , ..., sn , ... yaitu 3( 0 ), 3( ), 3 ( ), ..., 3 ( ) 5 51 52 5n −1 510 − 410 ) Sehingga s10 = 3( 59 Jadi, panjang lintasan bola sampai pantulan ke-10 adalah S = 2s10 – u1 atau 510 − 410 S = 6( )−3 59 • Coba kamu diskusikan bersama temanmu untuk mencari panjang lintasan bola pantul jika dilemparkan ke atas setinggi 5 meter dan memantul setinggi 4/5 kali dari tinggi sebelumnya. 214

Kelas X SMA/MA/SMK/MAK Edisi Revisi

Masalah-6.9 Setiap akhir bulan Siti menabung di sebuah bank sebesar Rp 5.000.000,00 dan memperoleh jasa simpanan sebesar 1 % setiap bulan. Jika bank tidak membebankan biaya administrasi. Tentukan simpanan Siti setelah 2 tahun!

Alternatif Penyelesaian Misalkan modal Siti yang disimpan setiap akhir bulan adalah M dengan bunga i %, maka diperoleh Setelah Bulan ke-

1 2

3 ... n

Modal

M + Mi = M (1 + i) M (1 + i) + M (1 + i) i = M (1 + i) (1 + i) = M (1 + i)2 M (1 + i)2 + M (1 + i)2 . i = M (1 + i)2 (1 + i) = M (1 + i)3 ... n M (1 + i)

Berdasarkan tabel di atas maka diperoleh simpanan Siti Bulan ke- 24 adalah : Simpanan Siti = M (1 + i)n = 5.000.000 (1 + 0,01)24 = 5.000.000 (0,01)24 = 6.348.673,24 Simpanan Siti setelah Bulan ke- 24 adalah Rp 6.348.673,24

Matematika

215

Definisi 6.4 Deret geometri adalah barisan jumlah n suku pertama barisan geometri, s1, s2, s3, ..., sn dengan







atau

sn = u1 + u2 + u3 + … + un

sn = a + ar + ar2 + … + arn – 1

dengan u1 = a dan r adalah rasio.

Sifat-6.4 Jika suatu deret geometri suku pertama adalah u1 = a, dan rasio = r, maka jumlah n suku pertama adalah a(1 − r n )a (1 − r na)(r n − 1)a (r n − 1) sn =i. sn = sn = , untuk sn = r < 1. r > r 1<.1. r > 1. 1− r 1− r r −1 r −1 ssnn ==

aa((11−− rrnn)) aa((rrnn −−11)) rr <<11.. rr >>11.. ii. ssnn == , untuk 11−− rr rr −−11

iii. sn = na, untuk r = 1. Bukti: i. sn = a + ar + ar2 + … + arn–1 …………………………………………………(1) Dengan mengalihkan kedua ruas persamaan 1) dengan r, didapatkan persamaan berikut. rsn = ar + ar2 + ar3 + … + arn …………………………………………………(2) Sekarang, selisih persamaan (1) dengan (2), diperoleh sn – rsn = (a + ar + ar2 + … + arn–1) – (ar + ar2 + ar3 + … + arn) sn(1 – r) = a – arn a − ar n sn = 1− r

Rumus jumlah n suku pertama deret geometri adalah n sn = a (1 − r ) , r < 1. 1− r

ii. Dengan cara yang sama pada sifat i, buktikan sifat ii, kemudian buktikan juga sifat iii.

216

Kelas X SMA/MA/SMK/MAK Edisi Revisi

Contoh 6.11 Tentukan jumlah 10 suku pertama dari deret geometri berikut ini! 1 1 4 + 1 + + + ... 4 16

Alternatif Penyelesaian Pertama harus ditentukan rasio deret bilangan tersebut. u2 u3 u4 1 r = = = = . u1 u2 u3 4 Karena r < 1, maka jumlah 10 suku pertama ditentukan melalui rumus, a (1 − r n ) sn = 1− r   1 10  4 1 −     4  = Akibatnya, s10 =  1 1 4

  1 10  4 1 −    10   4   16  1  =  1 −    . 3 3  2  4

Pertanyaan Kritis Perhatikan pola barisan bilangan berikut! a) 1, 3, 7, 9, … b) 1, 4, 9, 16, … c) 3, 1, 4, 2, 5, … Apakah barisan tersebut termasuk barisan aritmetika atau barisan geometri? Tentukanlah suku ke 10 dari pola barisan di atas!

Matematika

217

Life Enjoy

" Life is not a problem to be solved but a reality to be experienced! "

Get in touch

Social

© Copyright 2013 - 2019 TIXPDF.COM - All rights reserved.